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Why Mo/Au?

• Since most superconductors have too high a Tc to be of use in a 
microcalorimeter, it is common to use a bilayer of normal and 
superconducting films and the adjust the thicknesses of the two layers 
to tune Tc.  

• The choice of metals is guided by the need to survive the 
temperature changes and chemical exposures to which the devices 
will be exposed en route to becoming a focal plane array, as well as 
optimizing the superconducting properties.  

• At Goddard, we have been developing bilayers composed of 
molybdenum and gold. 

• Immiscible below 300 ºC, low diffusion even at elevated 
temperatures
• Corrosion resistant
• Seen as robust system for integration with array micromachining
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Basic test cells:
• Mo/Au TES bilayer, Au extends over Mo at edges by several �m
• Nb leads
• 0.5 �m silicon nitride membrane
• Range of membrane sizes and TES areas



Single pixel TES results:

• Excess noise (above theoretical predictions) seen and being 
characterized; does not scale as flux flow noise

• Nevertheless, we have extremely encouraging results
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Compact pixels:
• In order to be truly suitable for imaging spectroscopy, 
TES calorimeters need to be arrayed with a pixel size and 
focal-plane coverage commensurate with the telescope 
focal length and spatial resolution.  

• Since this requires fitting the TES and its thermal link, a 
critical component of each calorimeter pixel, into a far 
more compact geometry than had previously been 
investigated, we have begun to address the fundamental 
scaling laws in pixel optimization. 
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32 x 32 array of overhanging bismuth absorbers



How do we best allocate the available space among the 
TES, the link, and channels for wiring traces?  What is the 
smallest area that the link can occupy and still function?



guiding design philosophy:

• use as little area as possible for the weak links, thermal busses, 
and electrical contacts
• use remaining area for TES

• speed
• noise

scale of weak links: At low temperatures, the phonon mean free 
path in an insulating membrane exceeds the sample dimensions.  
Surface scattering dominates, and if the surface is smooth and 
free of defects the specular limit can be reached.  In the specular
limit, energy transport scales like radiative transfer.  Only the 
cross-sectional area, and not the length, determines the thermal 
load.  We had already seen such scaling in the mm scale 
membranes, but would it break down on short length scales?
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We also took some spectral data, but it was a quick 
data set.  We didn’t have time to optimize bias or 
reduce some bad pick-up noise.

Nonetheless….



not too bad….
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idea for accommodating wiring layer:
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• We are independently studying the pieces that need to come together 
to make high-performance calorimeter arrays.

Short term plans:

• We will continue to learn from our single-pixel test devices and 
work to understand our noise sources.
• We will further study the scaling of the thermal conductance of the 
weak link and will determine the optimal geometry for both 
performance and ease of fabrication.
• We will test isolated compact pixels to understand how the 
geometrical constraints affect performance.
• We will continue to optimize close-packed, integrated, cantilevered 
absorbers.
• We will test small arrays in which all of these components come
together.
• We will investigate methods for contacting pixels in a large array.
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Clearly there is still much to do, but it looks like we 
have a path to Constellation-X scale pixels and arrays.
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